Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity.
نویسندگان
چکیده
Glutamate excitotoxicity is implicated in the progressive loss of oligodendrocytes in multiple sclerosis, but how glutamate metabolism is dysregulated in the disease remains unclear. Because there is microglia activation in all stages of multiple sclerosis, we determined whether a microglia product, interleukin-1beta, could provide the mechanism for glutamate excitotoxicity. We found that whereas interleukin-1beta did not kill oligodendrocytes in pure culture, it produced apoptosis of oligodendrocytes in coculture with astrocytes and microglia. This requirement for a mixed glia environment suggests that interleukin-1beta impairs the well-described glutamate-buffering capacity of astrocytes. In support, antagonists at AMPA/kainate glutamate receptors, NBQX and CNQX, blocked the interleukin-1beta toxicity to oligodendrocytes. Another microglia/macrophage cytokine, tumor necrosis factor-alpha, also evoked apoptosis of oligodendrocytes in a mixed glia environment in an NBQX-blockable manner. These results provide a mechanistic link between the persistent and insidious microglia activation that is evident in all stages of multiple sclerosis, with the recent appreciation that glutamate excitotoxicity leads to the destruction of oligodendrocytes in the disease.
منابع مشابه
O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملOligodendrocyte NMDA receptors: a novel therapeutic target.
Excessive glutamate signaling can lead to excitotoxicity, a phenomenon whereby over-activation of glutamate receptors initiates neuronal death. In recent years, it has been shown that glutamate can be toxic to white-matter oligodendrocytes. Up to recently, the prevailing view was that oligodendrocyte excitotoxicity is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) a...
متن کاملExcitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition.
Glutamate uptake is crucial to terminate glutamate signaling and to prevent excitotoxicity. The present study describes the expression of functional glutamate transporters GLAST and GLT-1 in oligodendrocytes by means of electrophysiology, uptake assays, and immunocytochemistry. Inhibition of glutamate uptake, both in oligodendrocyte cultures and in isolated optic nerves, increases glutamate lev...
متن کاملMinocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia.
Minocycline, a semisynthetic tetracycline derivative, protects brain against global and focal ischemia in rodents. We examined whether minocycline reduces excitotoxicity in primary neuronal cultures. Minocycline (0.02 microm) significantly increased neuronal survival in mixed spinal cord (SC) cultures treated with 500 microm glutamate or 100 microm kainate for 24 hr. Treatment with these excito...
متن کاملGlutamate and ATP signalling in white matter pathology.
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of neurology
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2003